Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Karimah Kassim, ${ }^{\text {a }}$ Hadariah Bahrom $^{\text {a }}$ and Bohari M. Yamin ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Chemistry, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia, and
${ }^{\mathbf{b}}$ School of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, 43600
Bangi, Selangor, Malaysia
Correspondence e-mail:
bohari@pkrisc.cc.ukm.my

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.056$
$w R$ factor $=0.165$
Data-to-parameter ratio $=16.1$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
(E, E)- N, N^{\prime}-Bis(4-tolylmethylidene)ethylenediamine

The non-planar molecule of the title compound, $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{2}$, is centrosymmetric about the central point of the ethylene bond and posses E configuration across each azomethine $\mathrm{C}=\mathrm{N}$ bond.

Comment

The continuing interest in the Schiff bases of ethylenediamine derivatives is driven by the development of supramolecular assemblies (Thalladi et al., 1995), complexations with metals, and their biological activities (Patel et al., 2005). The title compound, (I), is similar to (E, E)- N, N^{\prime}-bis(1-phenylethylidene)ethylenediamine, (II) (Benson et al., 2006), except that the methyl group is attached at the 4-position of the benzene ring instead of the azomethine group.

(I)

In the molecule of the title compound, (I) (Fig. 1), the bond lengths and angles are within normal ranges (Allen et al., 1987). Like in (II), the molecule maintains its centrosymmetry about the ethylene bridge and the E configuration about the azomethine $\mathrm{C}=\mathrm{N}$ bonds. It also adopts a staggered conformation about the $\mathrm{C} 9-\mathrm{C} 9^{i}$ bond, required by the centrosymmetry. The $\mathrm{C} 1-\mathrm{C} 8$ tolylmethyledine fragment is nearly planar, having a total puckering amplitude, Q_{T}, of 0.074 (3) \AA (Cremer \& Pople, 1975). In contrast to compound (II), the

Figure 1
The molecular structure with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
entire molecule is not planar because the dihedral angle between the planar bridging $\mathrm{N} 1 / \mathrm{C} 9 / \mathrm{C} 9^{\mathrm{i}} / \mathrm{N} 1^{\mathrm{i}}$ and $\mathrm{C} 1-\mathrm{C} 8$ tolylmethyledine fragments is $61.65(17)^{\circ}$.

In the crystal structure, although there are no significant $\pi-$ π interactions, there are $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions, the closest $\mathrm{H} \cdots$ centroid distance being $2.80 \AA$, occurring between $\mathrm{C} 2 / \mathrm{H} 2$ and the ring centroid of $(\mathrm{C} 1-\mathrm{C} 6)^{\mathrm{ii}}$ with an angle at H of 138° [symmetry code: (ii) $-\frac{1}{2}-x,-\frac{1}{2}+y, \frac{3}{2}-z$]. These interactions lead to the formation of columns along the a axis.

Experimental

A mixture of ethylenediammine $(0.45 \mathrm{~g}, 0.015 \mathrm{~mol})$ and 4 -methylbenzaldehyde ($4.0 \mathrm{~g}, 0.030 \mathrm{~mol}$) in absolute ethanol (100 ml) was heated in a water bath at 323 K for 3 h . The mixture was then cooled to 273 K in an ice bath. The resulting white precipitate was filtered off, washed with cold ethanol and then dried under vacuum. Crystals suitable for X-ray investigation were obtained by recrystallization from a mixture of chloroform and ethanol (1:1) (yield $3.23 \mathrm{~g}, 81.5 \%$; m.p. 415.2-416.5 K).

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{2} \\
& M_{r}=264.36 \\
& \text { Monoclinic, } P 2_{1} / n \\
& a=6.842(2) \AA \\
& b=7.531(2) \AA \\
& c=14.933(5) \AA \\
& \beta=100.801(7) \AA^{\circ} \\
& V=755.8(4) \AA^{3}
\end{aligned}
$$

$$
Z=2
$$

$D_{x}=1.162 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=0.07 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Block, colorless
$0.42 \times 0.28 \times 0.16 \mathrm{~mm}$

Data collection

Bruker SMART APEX CCD area-
\quad detector diffractometer
ω scans
Absorption correction: multi-scan
$\quad(S A D A B S ;$ Bruker, 2000$)$
$\quad T_{\min }=0.971, T_{\max }=0.989$

4098 measured reflections 1484 independent reflections 935 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.025$
$\theta_{\text {max }}=26.0^{\circ}$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0854 P)^{2}\right. \\
& \quad+0.0506 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.18 \text { e } \AA^{-3} \\
& \Delta \rho_{\min }= \\
& \hline
\end{aligned}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.056$
$w R\left(F^{2}\right)=0.165$
$S=1.05$
1484 reflections
92 parameters
H -atom parameters constrained

H atoms were positioned geometrically with $\mathrm{C}-\mathrm{H}=0.93,0.96$ and $0.97 \AA$ for aromatic, methyl and methylene H atoms, respectively, and constrained to ride on their parent atoms, with $U_{\text {iso }}(\mathrm{H})=x U_{\text {eq }}(\mathrm{C}, \mathrm{N})$ where $x=1.5$ for methyl H and $x=1.2$ for all other H atoms.

Data collection: SMART (Bruker, 2000); cell refinement: SAINT; data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995) and PLATON (Spek, 2003).

The authors thank the Malaysian Government and Universiti Teknologi MARA for research grant IRDC-10519 and Universiti Kebangsaan Malaysia for the research facilities.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Benson, R. E., Roy, T. G., Dey, B. K., Barua, K. K. \& Tiekink, E. R. T. (2006). Acta Cryst. E62, o1971-o1972.
Bruker (2000). SADABS (Version 2.01), SMART (Version 5.630) and SAINT (Version 6.36a). Bruker AXS Inc., Madison, Wisconsin, USA.
Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Patel, N., Parekh, H. \& Patel, M. (2005). Transition Met. Chem. 30, 13-17.
Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Thalladi, V. R., Panneerselvam, K., Carrell, C. J., Carrell, H. L. \& Desiraju, G. R. (1995). J. Chem. Soc. Chem. Commun. pp. 341-342.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

